PHYS-434 Alexandros Bampis, alexandros.bampis@epfl.ch, CH A3 495 26.02.25

PHYS-434 — Physics of photonic semiconductor devices
Series 1 — RHEED and the square quantum well

1. The figure below shows RHEED oscillations for the growth of GaAs on the (001) plane by
MBE.
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Figure 1: RHEED spot intensity evolution with time for the growth of GaAs on (001).

(a) Explain why, for monolayer-by-monolayer growth, oscillations in the intensity of RHEED
spots are seen.

(b) Given that GaAs has a lattice parameter a = 5.653 A, calculate the growth rate given
by the above RHEED signal in pmh=!.

(¢) Suggest why, in the figure, the amplitude of oscillations decreases with time.

(d) Sketch how RHEED intensity would be expected to evolve over time for Stranski-Krastanov
growth.

(e) Why can RHEED not be used to monitor MOCVD growth?

2. Let us consider an electron (effective mass m}) in the conduction band of a semiconductor
quantum well of width L. Due to the geometry, we can separate the total electron wavefunction
U into a wavefunction which describes the behaviour of the electron within the plane of the
quantum well, ¢, and one which describes the behaviour across the quantum well, y,,:

U = ¢(z,y)xn(2) (1)

where ¢ has the usual unquantised, nearly-free electron form; as such we focus on y,,, which
is directly influenced by the quantum well. If we assume the potential barrier on either side
of the well is infinite, while the potential inside the well is constant and equal to zero, this
situation reduces to the well-known one dimensional “particle in a box” scenario.

(a) Write down the form of the time-independent Schrodinger equation as it applies to the
electron inside the quantum well (0 < z < L), along with the boundary conditions x,
must satisfy.
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(b) Show that the general solution x,, = Asin(k,z) + B cos(k,z) satisfies the Schrédinger
equation from part (a), and hence show that the energy of the electron within the well
is given by:
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(¢) Next, by applying the boundary conditions from part (a), show that the wavevector of
the electron, k,, must be quantised and hence show the full normalised forms of y,, are

given by:
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where n is any positive integer. Hence express their energies ¢, in terms of n,w,h, m}
and L.

In reality, the well potential barrier will not be infinite, but rather have a finite value V4. In
this case, continuity boundary conditions at the edges of the quantum well yield (for even and
odd wavefunctions respectively):
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k and m? are the wavevector and effective mass of the electron inside the well, while £ and
m’; are the wavevector/effective mass in the barriers. Equations (4) are clearly only true for
certain values of k and x; thus these equations show the system is still quantised.

(d) Trickier question. Assuming for simplicity that m% = m} = m}, show by graphical
means that the number of bound states contained in the well, N, is given by:

v () ©

Hint: use the substitution w = kL/2 and v = kL/2 to make the graphical interpretation
more readily apparent. [ and | are “round up to the nearest integer” brackets, i.e., a
cetling function.

(e) Considering an Aly3Gag7As/GaAs/Aly3GagrAs quantum well of width L = 12 nm,
calculate the number of bound states for an electron in the conduction band at 0 K.
[E;;“AS = 1.52 eV, E;”AS = 3.13 eV, m; = 0.067m( for GaAs where my is the rest
mass of an electron. To find the bandgap of Aly3GagrAs, use the empirical equation:
EleGu-ads — g pAlds (1 — 2) EG** — 2(1 — 2)C where C' is the “bowing parameter”
and is taken equal to (—0.127 + 1.31x)]

Comment on this expression.
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